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In this paper we describe a numerical model for investigating magnetohydrody-
namic (MHD) convective flow of a Boussinesq fluid in a rapidly rotating spherical
shell, driven by the buoyancy forces arising from incoming buoyant flux at the in-
ner core boundary. The model is designed to investigate the generation of magnetic
field in the Earth’s fluid outer core. Our model differs from that of G. A. Glatzmaier
and P. H. Roberts, who have recently investigated this problem, in several aspects.
We apply a different physical approximation in the force balance of the system: in-
stead of viscous stress, we use an axisymmetric inertial force to balance the axial
magnetic torque arising from the Lorentz force; we use a mixed spectral-finite dif-
ference algorithm for better parallelization of the code; and apply different boundary
conditions. We describe our numerical model in detail, and we test it by examining
purely thermal convection in a rapidly rotating fluid shell and by examining Kumar—
Roberts kinematic dynamos (modified for the spherical shell). Our results agree well
with those of the previous studies. We also present a weak-field dynamo solution
in a very simplified system and strong-field dynamo solutions in a more realistic
system. (© 1999 Academic Press
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1. INTRODUCTION

Planetary magnetic fields are widely believed to be generated and maintained by con
tive flow in the interior regions of the planets, resulting in so-called dynamo action. In t
case of the Earth, dynamo action is believed to occur in the iron-rich, fluid outer core.

The physics of dynamo action can be qualitatively described as follows: an electrice
conducting fluid with a velocity in a magnetic field results in a current densifywhich,
in the low-frequency magnetohydrodynamic (MHD) approximation, is given by

1
= —VxB, (1.1)
Ko
wherep is the magnetic permeability. This current modifies the fidiwough the Lorentz
forceFg,

Fg=J xB.

Dynamo action results if the magnetic fidds maintained against Ohmic decay.
In a rapidly rotating system, the flow is strongly influenced by the Coriolis féxge
which, in the co-rotating reference frame, is given by

FQ EZ,OQ XV,

wherep is the fluid density and? is the angular velocity of the system. Dynamos may
be categorized into weak-field dynamos in whigh <« Fq, and strong-field dynamos in
whichFg ~ Fq.

Magneto-convection studies [6] show that the Coriolis force and the Lorentz force.
acting alone, help stabilize the system against buoyancy forces. When both forces act o
system and are similar in magnitude, the stabilizing effects of the forces offset each o
and the system becomes most unstable. The Earth’s dynamo (the geodynamo) is bel
to be a strong-field dynamo.

Despite much study, the details of this process are poorly understood, in part bec:
dynamo solutions must necessarily be three-dimensional [7], and because the Cor
forceFo makes the already complicated nonlinear governing equations even more diffit
to solve numerically, as we shall demonstrate in the following sections.

Hindered by the difficulties, most previous studies have focused on simplified systel
such as generation of a magnetic field with a prescribed flow (the kinematic dynamo pr
lem) or systems incorporating a parameterization of the nonlinear interactions (such as
aw-dynamo problem). For a more detailed review, see, e.g., Gubbins and Roberts [8].

With the rapid development in computing facilities, as well as advances in compu
tional fluid dynamics, direct numerical simulation of fully nonlinear and three-dimension
dynamo processes has become possible. St. Pierre [9] found the first dynamically
consistent strong-field dynamo solutions, albeit with a simplified geometry and idealiz
boundary conditions. Jonext al. [10] investigated dynamically self-consistent dynamc
solutions in a spherical geometry for a parameter regime similar to that of the Earth,
with only a limited selection of nonaxisymmetric modes (the so-called “2.5-dimensioné
dynamo model). Recently, Glatzmaier and Roberts [1-4] found fully three-dimensiol
dynamo solutions.
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Although the Glatzmaier—Roberts model (the GR-model) represents a great advan
numerical modeling of the geodynamo, many fundamental problems remain to be addre
Inthis paper we present a numerical model for studying the geodynamo which, while sin
to the GR-model in some respects (for example, we retain a complete set of azimi
modes), includes some significant differences that we conjecture to be important for b
approximating the Earth’s core within computationally feasible parameter regimes. We |
also adopted different numerical algorithms for better computational performance.

Two problems are of particular importance in constructing our numerical model. The
is the force balance in the Earth’s fluid core, which is described by the momentum equa

1 A
B +V-VIVH22xV=—Vp+-IxB+ Lgt vy, (1.2)
P P

wherep is the modified pressuréyp is the density variationy is the kinematic viscosity
of the fluid, andg is the gravitational acceleration. In a rapidly rotating system, the flu
inertia and the viscous force are very small compared to the Coriolis force. In the Eal
core, for example, the Ekman numtethat describes the ratio of the viscous force to th
Coriolis force is very small,

v
2Qr?

E= ~0(105), (1.3)
based on the molecular kinematic viscosity of the core flujdq the mean radius of the
core—mantle boundary). Therefore, one expects that the Coriolis force, the Lorentz fc
and the buoyancy forcapg/ e will balance to leading order in a strong-field dynamo.

However, the azimuthal component of the Lorentz force integrated over any cylindr
surfaceX coaxial with the rotation axis across the fluid core (the “Taylor cylinders”; st
Fig. 1) can only be balanced by inertia and local viscous stress (provided that the buoy
force is radial),

_ bv] _ 2
/):dS(JxB)¢_/EdSo[Dt]¢ /):dSov(V Vg, (1.4)

where the subscripp denotes the azimuthal components of the forces in the sphers
coordinate systent (6, ¢).

The simplest approach is to heglect the viscous force and inertia in the momentum ba
(1.2) (the “magnetostrophic balance”). Taylor [11] showed that with this approximatit
the velocity field can be uniquely determined if the constraint

Tg = / dSUJ x B)y =0 (1.5)
X

is satisfied. It is clear that the Taylor’'s condition (1.5) is a singular limit of Eq. (1.4). V
call the solution that satisfies (1.5) a Taylor state. Note Taat proportional to the axial
Lorentz torque acting ol (see Section 3); accordingly we also cBilthe Lorentz torque
and (1.4) the torque balance equation.

Although we believe that the geodynamo is a strong-field dynamo, we do not expe
to be an exact Taylor state: fluid inertia and viscous forces in the Earth’s core cause ¢
departures from the Taylor state. It is therefore important to understand the effect of the
forces in the core dynamics.
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FIG. 1. The cylindrical surfac& on which the Taylor’s constraint is derived.

Unfortunately, it is not computationally feasible to model the geodynamo with the Ekm
number in (1.3). Instead, we must seek ways to model the geodynamo with numeric
feasible parameters without altering the core dynamics qualitatively. The answer to |
problem relies on our finding an appropriate approximation to the force balance in
Earth’s core.

This paper is organized as follows. In Section 2, we present the basic system and the
responding equations. We also discuss in detail the force balance in our system and pr
the corresponding physical approximations. In Section 3 we describe the numerical mef
that we use. In Section 4 we discuss tests of simplified versions of the code, examir
purely thermal convection and the Kumar—Roberts kinematic dynamo. In Section 5,
report the results of a weak-field dynamo and a strong-field dynamo found from the 1
system.

2. MATHEMATICAL MODEL

We consider a simple mathematical model: an incompressible, electrically conduct
fluid in a spherical shell; <r <r, (wherer is the radius) which rotates rapidly about a
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vertical axis with an angular velocity
Q=Ql,. (2.1)

We refer tor =r; as the inner core boundary ane-r, as the outer core boundary (or, in
the case of the Earth, the core—mantle boundary).

The momentum balance in the fluid shell is described by (1.2). The variations of
magnetic fieldB and the temperature perturbatidrare described by the equations

(% —nV?*)B =V x (vx B), (2.2)

(3 —«V¥)T = —v-VT +Q, (2.3)

wheren is the magnetic diffusivityx is the thermal diffusivity, and) describes internal
heating (or secular cooling). The incompressibility of the fluid and the nonexistence
magnetic monopoles give

V.v=V.B=0. (2.4)

We impose a constant incoming heat flux at the inner core boumdasya prescribed
temperature gradient

oT
h1=—-|— . 2.5

! |: ar :| r=f; ( )
The internal heating is assumed to be

GhTK

Q= , (2.6)

lo

wheree « 1 (¢ =0.01 in this study). By (2.5) and (2.6), the system allows the conducti

solution
- r2 € e/r)\?
To(r) = To+rohr [(r/ro) <1 - 3|’io> ~ % <r0> ] , (2.7)

fo = (2.8)
fo

where

is the ratio of the radii of the inner core and the outer core boundaries. The density variz
Ap is given by

A
—p = —aT(T — TO) = —aT®, (29)
1Y

whereat is the thermal expansion coefficient of the fluid ads the temperature pertur-
bation.

To model the interaction of the Earth’s fluid outer core with the solid inner core and
mantle, we permit angular momentum to be exchanged with the mantle absve) and
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the inner core below (< r;). Denoting the angular momentum of the inner coréd/hyand
the angular momentum of the mantle lly, in the co-rotating frame, we have (see, e.g.,
Goldstein [12])

%Mi,m+QxMi,m=I‘B+I‘V+I‘p, (2.10)
wherel'g, I, andI', are the magnetic, viscous, and pressure torques acting on the bou
aries, respectively. The pressure tor@ygevanishes on spherical boundaries.

Denoting the deviation of the temperature from the mean staé, lnging the radius,
of the outer core boundary as the length scale, the magnetic diffusive tené/n as the
time scale 3 = (2Qupn)*/? as the magnetic field scale, ahgr, as the temperature scale,
we obtain the nondimensional equations

Ro(d +V-VIV+1, xV=—Vp+Jx B+ EV? + RyOr, (2.11)
(3 — V?)B =V x (v x B), (2.12)
(3 — A V?)® = —v- V[To(r) + O], (2.13)

whereJ and Ty are the nondimensional forms of (1.1) and (2.7), respectively. The nonc
mensional parameters in Egs. (2.11)—(2.13) are the Ekman nufb®e magnetic Rossby
numberR,, and the Prandtl numbey; that describe the intrinsic material properties of the
system

n

K
= c = —; 2.14
Ro sz %= (2.14)
and the Rayleigh numbd®, that measures the driving buoyancy force
chgohTrg
=—2 2.15
Rin 20m (2.15)

The magnetic Rossby humbBg and the Ekman numbét are very small in a rapidly
rotating fluid,

R, E L (2.16)
In the Earth’s outer core, for example,
Ro ~ O(1079). (2.17)

Consequently, there exist rapidly rotating and slowly decaying modes, with differences
several orders of magnitude in their frequencies and the decay rates, as demonstrat
Appendix A (for a more complete analysis, see a more recent paper by Vigakdef13]).
Furthermore, very thin boundary layers develop at the boundaries (Ekman layers) an
the Taylor cylinder tangent to the solid inner core at the equator (Stewartson layers). F
detailed discussion of these boundary layers, we refer the reader to Greenspan [14].
Because of these difficulties, several approximations have been adopted in prev
studies, which have direct consequences on the torque balances on the Taylor cylin
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given by
Dv 2
Te=Ry | dA|—| —E [ dA(V"V),, (2.18)
b Dt |, s

which is the nondimensional form of (1.4).

In the simplest approximation, the inertial modes and the torsional oscillations
Appendix A) vanish from the system. So do the boundary layers arising from the visc
couplings on the inner and outer boundaries. The physical justification for the approxi
tion is that the fast modes associated with the inertial force are irrelevant to the dynal
under consideration and that the viscosity is negligible in the mainstream flow [15], whic
where it is believed dynamo action occurs. With this approximation, the Taylor’s constr:
(1.5) is used to determine the geostrophic part of the flow. This constraint (1.5) has |
recently extended to include non-axisymmetric boundaries [16].

However, the dynamical process in the Earth’s core does not follow (1.5) exactly. To
and Roberts [17] first proposed balancing departures from the Taylor state (1.5) by a \
viscous drag at the boundaries for the slow modes (i.e., the modes with negligible ine
Braginsky [18] further developed this idea, conjecturing a special solution, the so-ca
Model-Z solution, in which the magnetic field lines align almost parallel to the rotation a:
of the Earth. We name this approximation the “viscous-type” approximation in the res
the paper.

There exist two approaches to incorporating viscous effects: indirectly by restoring
viscous torque in the torque balance [15], or directly by retaining the viscous force in
momentum equation (2.11).

The viscous-type approximation may not be appropriate to the Earth’s outer core.
servations of variations in the Earth’s rotation rate (length-of-day variations) show tha
decadal time scales, changes in the rotation rate of the Earth result from the exchan
axial angular momentum between the fluid core and the solid mantle [19, 20]. It is v
unlikely that the viscous friction at the core—mantle boundary is important for the angt
momentum exchange, since the time scale for viscous dissipation of the required an
momentum is much longer than the observed decadal time scales.

On the other hand, torsional oscillations, which result from the balance of the inertia
the Lorentz torquég in (2.18), are excluded both in the magnetostrophic approximation
in the viscous-type approximation, thus rendering them inappropriate for the short-pe
geomagnetic secular variations.

Based on the above analysis and the fact that the axial angular momémiuohe-
pends only on axisymmetric part of the flow, we choose to retain the axisymmetric |
of the inertial force in the momentum equation (2.11). Denoting the axisymmetric
non-axisymmetric parts of the functidnby fandf’,

1 2

f=_— fdp, and f'=f—f, (2.19)
27'[0

respectively, we approximate the momentum equation (2.11) as

Ro(dV+V-VV) +1, x V= —Vp+J x B+ EVV + Ry0rI, (2.20)
1L, xV =-Vp +J xB) + EVYV 4+ Rp®r. (2.21)
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The angular momentum balance (2.10) is also approximated as

d
Roa Mz == Fz, (2.22)

1
EMX'y = :l:ry,x. (2.23)

We refer the reader to Appendix D for detailed expression for the torques and the ang
momentumM.

To further reduce viscous effects in our system, we apply viscous stress-free bount
conditions (2.27), thus eliminating viscous coupling at the boundaries. Accordingly, visce
effects are of2(E) in our system.

Our approximation is an extension of the force balance for the torsional oscillatio
proposed by Taylor [11] in his studies of the Taylor's constraint (1.5). Therefore we ¢
our method here the “inertial-type” approximation in the rest of the paper.

Some previous studies have also analyzed the effect of inertia on the Taylor state. Rol
and Stewartson [21] restored inertia to balance a finite Lorentz torque in their wea
nonlinear analysis of magneto-convection; Jault [22] examined the effect of inertia on
Taylor state in the mean-field dynamo studies; and St. Pierre [9] applied inertia in his f
nonlinear studies of the dynamo in a planar layer system. Glatzmaier and Roberts [3]
include inertia in their model, though it is orders of magnitude smaller than the viscao
force, so that torsional oscillations will be strongly damped in their model.

We solve Egs. (2.20), (2.21), (2.12)—(2.13) with the following boundary conditions. Tl
boundary conditions for the temperatupetake one of two forms. For the fixed heat flux
across the boundaries,

00
ar

=0, atr =rjo, 1. (2.24)
Alternatively, if the temperature is fixed at the boundaries,
® =0, atr =rjo, 1. (2.25)

Likewise, the boundary conditions of the velocity fieldnay have one of the two fol-
lowing forms. For non-slip boundaries,

V] =0, atr =rjo, 1, (2.26)

where[ ] denote the difference across the boundaries. Alternatively, if the boundaries
impenetrable and viscous stress-free,

1,-v=1,x (o, -1y) =0, atr =rjo, 1, (2.27)

wherel, is the norm of the boundaries aaq is the viscous stress tensor. For the detailec
expression o#r, in spherical coordinates, see, e.g., Landau and Lifshitz [23].

The boundary conditions for the magnetic field depend on the electrical conductivity
the boundaries. For the perfectly electrically conducting boundaries,

1,-B=1,xJ=0, atr =rjo, 1; (2.28)
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for the perfectly electrically insulating boundaries,
B]=1,-J=0, atr =rjo, 1. (2.29)
If the boundaries are finitely electrically conducting, we have
Bl =[1n-J] =[1n x E] =0, atr =rjo, 1, (2.30)

whereE is the nondimensional electrical field.

3. NUMERICAL METHOD

Because of (2.4), we introduce the poloidal-toroidal decompositions

v=VxT,1L +VxVxP,JI, (3.1
B=VxTpl +V xV x Rl 3.2

wherel, is the radial unit vector an@ andP are the toroidal and poloidal scalars, respec
tively. For a given radius, we expand the variables in spherical harmonics,

P T P Tl T = Y S o™ b™ j™ . HY"@.¢) +cc..  (3.3)

m=0,M I=m,L

whereY™ (0, ¢) are the orthonormal spherical harmonic functions and c.c. stands for
complex conjugate. A similar expansion is made for the temperature perturb@tiemour
model, the azimuthal truncation ordkr is in general lower than the meridional trunctior
orderL.

Denoting by§, the vector of variables in spectral space, and substituting (3.1)—(3.3) i
(2.12)—(2.13) and (2.20)—(2.21), we obtain the following partial differential equations
the spectral coefficients,

A+ Aoty = Ry, (3.4)
whereA; and A, are two matrices of linear radial differential operators, érlldepresents
the nonlinear interactions. Detailed expressions are given in Appendix B.

The nonlinear terr\; is solved by the collocation point method via spherical transform
This method has long been applied in geophysical fluid systems (see, e.qg., [24]); for a det
description of the method, we refer the reader to Cartitd. [25].

The spherical transforms account for most of the CPU time. For example, in our simula
on a CRAY J916, more than 80% of the total CPU is attributed to the spherical transfor
A key issue is therefore to optimize these transforms.

One approach is to develop a fast spherical transform algorithm. With a truncation o
0<m,| < L,afasttransform needs or@¥[L? log L] operations, in contrastt®(L3log L)
operation for standard transforms [26]. Unfortunately, fast transforms are not curre
practical because of high overhead and the memory requirement for our model.

Another approach is to parallelize evaluation of the spherical transforms. The sp
ical transforms can be carried out independently at different radii. To exploit this,
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develop a fourth-order compact finite difference algorithm on nonuniform grid poin
{ri 11 =0,1,..., N}inradius to resolve possible boundary layers in the system optimall
For illustration, we consider the second-order differential equation

82
ﬁy'F f(ry=0, (3.5)

where f is a known function of . Introducing

. 0y
we approximate Eq. (3.5) as
1 1 . -
o [Yir2 + 91— 9y — Vil = S[(@9i + (@9)ia] =0, (3.7
12h 2
1 . .. 1
1o Vive 9 = 9% — ¥ial + S[@TY)i + (@fY)ia] =0, (3.8)
fori=1,2,..., N —2.Inthe above equationg, is the transform between the radiuand
the uniform grid spacsg,
gi = (dr/dx)x. )

andh is the mesh size of the uniform grid in At the boundaries, we have

1 1 . .
i%[yiiz - Vil — 6[(9)’)i +4(9)i+1+ (@Y)i+2 =0, (3.9)
1 1

i%[yijﬁ - Gil+ 6[(ng)i +4(gfy)ic1 + (9fyi =0, (3.10)

fori =0, N — 1. To better resolve the boundary layers, we choose the collocation points
the Chebyschev polynomials as the radial grid points

fori =0,1,...,N. (3.11)

ri = 3(1—rio) COSNX + (L +rig),

Denoting bys, andN, the values of; andN; at the radial grid points, respectively, we

reduce the system (3.4) into a set of ODEs,

ds R N

B2 4 B,& = N, (3.12)

dt
whereB; andB; are two linear (time independent) matrices. Because of the small inertia
the system, the norm @, is much smaller than that d&,. To deal with this stiffness, we
solve Egs. (3.12) by the Crank—Nicolson scheme (a second-Ard&able implicit scheme
[27]) for the linear terms, and an Adams-family third-order predictor—corrector algorith
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[28] for the nonlinear terms:

At % At ~ At A
<Bl + Bz)s= (Bl - Bz)sgk) + 15 [23N,(8°)

2 2
— 16N, () + 5N, (3%2)], (3.13)

At R At R At~

(Bl + 7 BZ) S(Zk+l) == (Bl - 7 BZ) S(Zk) + E [5 NZ(S)
+8R,(8°) — No(87)]. (3.14)

By this algorithm, we filter out the fast inertial waves that are irrelevant to the physi
processes under consideration. Also, we need to evaluate twice the nonlinear terms pe
step with the Adams-family algorithm.

The stability condition (CFL condition) of the algorithm is determined by the nonline
termsN that are solved explicitly (e.g., [28]),

AtA| < 1.1, (3.15)

where the parameteris determined by the nonlinear teris see (C.6) in Appendix C.
The CFL condition (3.15) is tested at each time step in our simulation.

The parallelization of the code is tested on CRAY J916 with four processors. Deno
by 7y the wall clock time of the simulation with processors, we found that, as shown il
Fig. 2,

71 ~ 3.674.

4. THERMAL INSTABILITY AND KINEMATIC DYNAMO SOLUTIONS

It is difficult to benchmark our model because there are no three-dimensional, f
nonlinear numerical dynamo solutions in similar systems. However, we are able to
our model against well known studies in thermal instabilities and kinematic dynan
In particular, we are interested in isolating critical Rayleigh numbers for purely therr
convection and the growth rate of magnetic field perturbations in kinematic dynamos.
all simulations in this paper, we choose

Re=E, Q=1 ro=12/35 4.1)

4.1. Thermal Convection in a Rapidly Rotating Fluid

Our first test is to study thermal convection by eliminating the magnetic Beld
our system. We wish to identify, at least in the context of purely thermal convection,
asymptotic regime of the small parameters.

In this simplified system, we assume that the heat flux is fixed at the boundaries, anc
the boundaries are impenetrable and “stress-free”; see (2.24), (2.27), and (3.3). With-
boundary conditions, there is no coupling across the boundaries, and hence the ar
momentum of the fluid shell is conserved. For convenience, we assume a zero axial an
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FIG. 2. The test of the parallelization of the code. The horizontal axis is the nuhloéthe processors. The
vertical axis is the rati@, /Ty of the clock time of simulation. The solid circles are the ratios for different number:
of processors used in simulation. The dotted line represents the perfect parallelization (zero overhead).

momentum in the fluid core. Note that the parameters (4.1) imply that

X<

Pe =1 (4.2)

The truncation order varies with the Ekman numBefrom L = 28 forE=10"3toL =
42 for E =10-°. The truncation limit is chosen such that the energy of the cutoff mode
at least four orders of magnitude smaller than the energy peak value.

We start the simulation with small-amplitude random perturbations. We gradually |
creaseRy, to a critical valueR§, at which the perturbations stop decaying with time. Fol
comparison with theoretical asymptotic results, we calcuR§taumerically by the method
summarized as follows: for a given Ekman numBgmwe evaluate the growth rate (or the
decay rate). of the perturbations for differeri®,. Then we choose the two Rayleigh num-
bersR; andR; with A, andi; closet to zero (i.e., the critical point). The critical Rayleigh
numberRg, is then estimated by the extrapolation

AL
Al — Ao

Rh =R+ (Ro — Ry).
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With this method, we obtain
R, = 1159, 2481, 4502 (4.3)
for the Ekman numbers
E=10°  10% 107,
respectively. From these values, we derive the asymptotic relation
RS ~ 10.1E7Y3, (4.4)

This is slightly larger than the early thermal convection re&ilt~ 8.6956E /3 for the
Prandtl number (4.2) in a rotating system [6, 29]. However, it is close to a more rec
asymptotic result [30]

RS ~ 10.8E~Y3,

The differences in the results may be partly due to differences in the systems: a raj
rotating fluid sphere with a uniformly distributed heat source in the fluid has been consid
in the previous studies. They may be also caused by the errors in estimating the gr
ratesiy andio.

When Ry, is slightly above critical, our solution shows the characteristics of the mc
unstable mode in linear stability analysis [29]: i.e., the convective flow drifts eastward, .
the temperature perturbation is symmetric about the equator.

Our results show that inertia is of secondary importance in the onset of thermal instat
and in the slightly super-critical flow. For example, fer=10"*, we do not observe a
significant axisymmetric flow in our solutions wh&, is slightly super-critical. However,
when Ry, is well above critical (for exampleéRy, = 10Rf,), a strong axisymmetric toroidal
flow occurs in the system. In Fig. 3 we show a snapshot of the axisymmetric part of
flow. On the right are streamlines of the axisymmetric poloidal flow (the colors repres
the sense of circulation) and on the left is the differential rotation

wd = Vg /T SING. (4.5)

The color scale in the figure shows the (nondimensional) valueg.of

4.2. Kumar—Roberts Kinematic Dynamo Model

In early studies of dynamo theory, great effort was devoted to understanding the gener
of magnetic field with a prescribed flow. In the Kumar—Roberts kinematic dynamo [5],
flowis very simple, yet sufficient to generate magnetic field, provided the magnetic Reyn
number

VL
Rn=—, (4.6)
n

whereV is the typical magnitude of the applied flow, is above some critical value. Ma
subsequent studies in kinematic dynamo theory are extensions of this model [31, 32].
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200

100

=100

FIG. 3. A snapshot of the differential rotatian, (in the left hemispherical shell) and the streamlines of the
axisymmetric poloidal flow (in the right hemispherical shell). The color on the left shows the (nondimension
values ofwy and the color on the right shows the direction (clockwise/anti-clockwise) of the poloidal flow. Th
vertical axis is the rotation axis of the system.

We reinvestigate the Kumar—Roberts problem in our spherical shell system with
modified flow

w9 = —eg/4m/3x3(1 - x?),
V9 = €11/ /5x8(1 — x?)3, (4.7
v2 = /21 /5x*(1 — x?)?(e2 08 JrX — i e38iN 37X),

whereeg 1 23 are constants and

=1 (4.8)

is the transformed radial coordinate. The coefficiant@re chosen to be those in the
Kumar—Roberts calculations [5]. We also assume that both boundaries are perfect elect
insulators (see (2.29) and (3.3)) and that the magnetic field vanishes at the origin an
infinity.

In kinematic dynamo studies, one needs to solve only the induction equation (2.1
which is linear inB. One approach is to solve (2.12) as an eigenvalue problem by assum

B = Boe’", (4.9)
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whereo is the eigenvalue (the complex growth rate) of the mode. Substituting (4.9) i
(2.12), one can obtain the eigenvalue equation

detD; — o] =0, (4.10)

whereD; is a constant matrix antl is the unitary matrix. Denoting by; the eigenvalue
with the largest real part, we see that dynamo action occurs if

A = N(o1) > 0, (4.11)

i.e., at least one mode increases exponentially with time. The waligereferred to as the
growth rate of the magnetic field.

Here we integrate the induction equation (2.12) directly from a random initial state, v
the truncation ordet. = M =21 andN = 36. After a finite time intervalAT, the solution
is rescaled with the scaling factdr,

1/2
f=|B|.= U |B|2dv} , (4.12)
VCOI'E

where Ve is the volume of the spherical shell. After an initial transient period, we ¢
obtain the largest growth rate

A= In(f)/AT (4.13)

and the corresponding most unstable mode. The transient period depends on the val
Rn: our calculations show that this period lasts approximately two magnetic free-de
times, as shown in Fig. 4.

In Fig. 5, we compare our results with those of Holme [32], who solved the eigenva
problem (4.10) via a second-order finite difference scheme on uniform grid points in rac
Note that our results (the dashed lines) intersect with Holme’s (solid lines) approxima
at N =65 for all values ofR,, suggesting that the differences are mainly caused by t
radial finite difference approximations. In Table I, we list the values of our growth rat
the theoretical results for the free-dec#&,(= 0) and the extrapolated results of Holme’s
eigenvalues. Again, we observe that the results are consistent.

TABLE |
The Growth Rate for the Kumar—Roberts Kinematic Dynamo Model

Rm 0 4000 4500 5500 6000
A —9.9796 —1.8828 —0.9663 0.9378 1.8712
h —10.0257 —2.0096 —1.1331 0.6354 1.5235

Note.x; are the growth rates from our modgl. are the eigenvalues from the analytical
study (R, = 0), and the extrapolated values of the eigenvalues of Holme’s kinematic dynamo
model (R. Holme, private communication).
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5. THERMALLY DRIVEN SELF-CONSISTENT DYNAMOS

In our search for fully dynamically, self-consistent dynamo solutions, we also use fi
heat flux boundary conditions and viscous stress-free boundary conditions. The bour
conditions for the magnetic field vary in our simulation; we address this later in this sect

The magnetic Rossby numbBg and the Ekman numbédg vary in our simulation. We
start with the value

E=10" (5.1)

The corresponding critical Rayleigh number for the thermal convection is given in (4.3

As shown for the Kumar—Roberts model in Section 4, dynamo action occurs if the driv
flow is sufficiently strong, or equivalently, if the (thermally driven) convection is sufficient
vigorous, thus suggesting that dynamo action occurs if the Rayleigh nuRyberaches a
certain threshold valu®y > R§,, and that the magnitude of the generated magnetic fie
increases withRy,.

However, when the Lorentz force is comparable to the Coriolis force, the critical va
for convection decreases, as summarized in [6]. Thus one may expect that if the gene
magnetic field is sufficiently strong, dynamo action may persist at subcritical Rayle
numbers, i.e., aR, < Rj,. This was shown analytically by Childress and Soward [33] in
rapidly rotating planar layer system, and demonstrated numerically by St. Pierre [9].

Guided by these studies, we start our dynamo simulation with small-amplitude ran
perturbations to seek weak-field dynamos, and with large-amplitude random states to
strong-field dynamos.

5.1. Weak-Field Dynamo Solutions

For the weak-field dynamo study, we assume that the inner core is a perfect elect
conductor, and that the mantle is a perfect electrical insulator; see (2.28) and (2.29). ¢
the magnetic stress vanishes at both boundaries, the total angular momentum of the fl
conserved, a condition that is well satisfied in our calculations.

We integrate the solution from a small-amplitude, random initial state with superecriti
R Initially, the magnetic field decays exponentially, while the velocity and temperatt
perturbations develop to a finite amplitude state, indicating a non-magnetic thermal cor
tive solution. The decay rate of the magnetic field perturbations decreaBgdmazeases.
The magnetic field stops decaying whigi reaches a valuRy:

RR ~ 14RS, (5.2)

In Fig. 6, we show the variation of thie;-norm B of the magnetic field foRy, = 14R§,
(the solid line), and foR, = 13R§, (the dashed line). Note that dynamo action occurs fir
atRjj.

The magnetic field is weak, in the sense that the local Elsasser nutniserery small
in the fluid core:

JxB

1, x

<2x1073 (5.3)




68 KUANG AND BLOXHAM

1e-02 T T T T

|BI

1e-03

1e-04 : ' : :
0.0 0.4 0.8 12 16 2.0

FIG. 6. TheL,-norm of magnetic fiel® perturbations at different values of the Rayleigh numRgr The
solid line is for Ry, = 14R;,, while the dashed line is foR, = 13Rj,. The timet is scaled with the magnetic
free-decay timey.

Also, the total magnetic enerdyg is small compared with the total kinetic energy:

— ~0.1. (5.4)
V
The length scale of the magnetic field is very small, as shown by a snapshot of the ra
magnetic field at the outer core boundary (Fig. 7).

The field is generated near the inner core boundary and spreads spirally toward the
core boundary. The zonal propagation of the magnetic field varies radially: the field dr
eastward (in the direction of the rotation of the system) near the outer core boundary,
drifts westward near the inner core boundary.

Compared with the imposed flow (4.7) in the Kumar—Roberts dynamo model, the ct
vective flow in our system is far more efficient in the magnetic field generation: the loc
magnetic Reynolds number

2
ﬁmzi d¢|V><(V><B)|

—— <20 5.5
2 Jo |V2B| - (5-5)

is only slightly above the lower limit required for the onset of dynamo action [34], but muc
smaller than those values in the Kumar—Roberts dynamo solutions (see Table I).

This indicates that the weak magnetic field interacts dynamically with the flow. To illu
trate this, we show, in Fig. 8, a snapshot of the axisymmetric flow of the solution. Compa
with that of the purely thermal convection (Fig. 3), we observe significant differencesin t
differential rotationwy. This is partly caused by a small magnetic tordgeon the Taylor
cylinders that can only be balanced by a small axial inertial forc&,).
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Although our system differs from the systems studied previously, such as rotating ann
[35] and rotating spheres [36], our solutions share some properties with the weak-
dynamo solutions in those systems. For example, the toroidal field is comparable tc
poloidal field, and the differential rotation decreases with the depth.

5.2. Strong-Field Dynamo Solutions

We study strong-field dynamos at higher Rayleigh numbers. To approximate more clc
the Earth’s outer core, we assume that the electrical conductivity of the inner core is
same as that of the fluid corg & 7). Hollerbach and Jones [37] demonstrated that a finite
conducting solid inner core is important in their dynamo solutions.

We assume also that there is a conductive layer above the outer core boundary
(nondimensional) thickness

dm=2/35
and magnetic diffusivity
nm = 4009.

The finite Lorentz stress on the boundaries generates couplings across the boundarie
To avoid high truncation for the initial transient period and to reduce the CPU time
the process, we introduce a hyper-dissipation,

_ [ vo, forl <o,
V= {Vo[l—i-é(l — |0)2], forl > |0; (56)

similarly for magnetic diffusiom and thermal conductivity. As the simulation proceeds,
we gradually reduce the hyper-dissipation by either increakjiray decreasing:. Our
application of the hyper-dissipation follows from Glatzmaier and Roberts [1], though
form (5.6) is weaker than that of Glatzmaier and Roberts.

For mathematical convenience, we apply asymptotic boundary conditions near the o
of the system [5],

BT, j™)] ~ '+t atr = 0.1rj,. (5.7)
The magnetic field boundary conditions at the boundaries are, by (2.30) and (3.3),

[b] = [ii] = [ab1/ar] = o.
; atr =1, ryo, (5.8)
[a,](aj{“/&r)] = mH(r){“,

where

o, = m (5.9)
n

denotes the ratio of the magnetic diffusivities across the boundaries and

1 9 1 9
-t 9 — = % SinoB.[v,l. 5.10
sind 99 o v] ~ ging 5g SN0 Br[vs] (5.10)
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FIG. 9. TheL,-norm of the strong magnetic field solution fB = E = 10~*. The horizontal coordinate is
the time scaled by the magnetic free-decay tigeand the vertical coordinate is the-norm of the magnetic
field.

We study strong-field dynamo action for two sets of parameters,
E=10% and E=2x10". (5.11)
In the first case, a strong-field dynamo solution is found when
R A~ 40RS,  fore =0.032 1 = 5, (5.12)
as shown in Fig. 9. In the second case, a strong-field dynamo solution is found when
Rp A~ 35RS,  fore = 0.05,1p = 5, (5.13)

as shown in Fig. 10. In both cases, we chobse40, M = 32, andN =40.
The generated magnetic field is strong: the Lorentz force is comparable to the Cori
force

A~1 (5.14)
in the bulk of the fluid core. The magnetic energy is also much larger than the kinetic ene
with a typical ratio

E
EB ~ 2000 (5.15)

v

in the solutions.
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FIG. 10. Similar to the previous figure, but fd®%, = E =2 x 10°°.

In Fig. 11, we show a snapshot of the radial comporgnof the second solution at
the outer core boundary. It is dominantly dipolar, with the magnetic field lines entering
fluid core in the northern hemisphere and leaving the fluid core in the southern hemispl
The field drifts westward at the boundary. These features are very similar to those o
geomagnetic field at the core—mantle boundary inverted from the observations at the st
of the Earth [38].

The configuration of the magnetic field inside the fluid core is simple. In Fig. 12 we sho
snapshot of the axisymmetric toroidal magnetic field (in the left hemispherical shell) anc
field lines of the axisymmetric poloidal field (in the right hemispherical shell). The poloic
field is predominantly dipolar, while the toroidal field is predominantly quadrupolar.
particular, we observe that the field is very strong in the bulk of the fluid core outside
tangent cylinder.

Our solution differs from that of the Glatzmaier and Roberts [4] inside the fluid core.
their model, the field is strong near the inner core boundary and within the tangent cylir
Also, the field in their solution displays a more complicated morphology, in particular n
the inner core boundary. We discuss these differences elsewhere [39].

6. CONCLUSIONS

In this paper we have presented a numerical model to simulate convective flow
rapidly rotating spherical shell. We assume that the (axisymmetric) inertia is importar
the torque balance (1.4) on the Taylor cylinders, and we minimize the viscous torque ol
cylinders by imposing the viscous stress-free boundary conditions.
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FIG.7. Asnapshotof the radial magnetic fiddd of the weak-field dynamo solution at the outer core boundary
r=1.

FIG. 8. A snapshot of the differential rotatian, (in the left hemispherical shell) and the streamlines of the
axisymmetric poloidal flow (in the right hemispherical shell) of the weak-field dynamo solution.
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FIG. 11. A snapshot of the radial magnetic fieBl of the strong-field dynamo solution at the core—mantle
boundaryr =1.

FIG. 12. A snapshot of the axisymmetric part of magnetic field in the strong-field dynamo soluti&y fer
E =2x 107°. The toroidal field is shown in the left hemispherical shell and the magnetic field lines of the poloi
field are shown in the right hemispherical shell. The colors on the left represent the strength of the toroidal 1
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We use a mixed spectral—finite difference scheme in space and a multi-step predic
corrector algorithm in time. The time step is controlled by Alivimodes that result from
a balance of the inertial force and the Lorentz force (CFL condition). We have tested
model against purely thermal convection and the Kumar—Roberts kinematic dynamo,
have found good agreement.

We have studied weak-field dynamos in a simple, mechanically isolated system by alls
ing an electrically perfectly conducting inner core and an electrically perfectly insulatir
mantle. We found a weak-field dynamo solution at the supercritical Rayleigh nuRjber
14RS for R, = E = 10~%. The Lorentz force is negligible compared with the Coriolis force
and the magnetic energy is small compared with the kinetic energy. The magnetic f
is dominantly equatorial dipolat £ m=1 mode in spherical harmonic expansion) at the
outer core boundary. The length scale of the field is very small in the fluid core.

We have studied strong-field dynamos in a system closer to the Earth: we includ
finitely conducting solid inner core and a finitely conducting layer at the top of the flu
core. The exchange of the angular momentum across the boundaries is carried out b
magnetic torque acting on the boundaries. In this system, we found two strong-field dyne
solutions: one foRy, ~ 40RS,, R, = E =10-*and one foR ~ 35R§,, Ry=E =2x 107°.
The generated magnetic field is strong: the Lorentz force is comparable to the Coriolis fc
in the bulk of the fluid core and the magnetic energy is three orders of magnitude lar
than the kinetic energy.

At the outer core boundary, our strong-field dynamo solutiorRipe= E =2 x 107° is
similar to the observed geomagnetic field in many aspects: the field is dominantly dipc
and drifts westward. Inside the fluid core, our solution differs greatly from the solutio
of Glatzmaier and Roberts [39]. In our solution, the field is dominantly generated in t
bulk of the fluid core outside the tangent cylinder, while the field in the Glatzmaier—Robe
dynamo solution is generated near the inner core boundary and inside the tangent cylir

We have demonstrated [39] that, when a strong viscous coupling is introduced on
boundaries while the inertia is kept unchanged, the dynamo solutions undergo a trans
from our solution to the solutions qualitatively the same as the Glatzmaier—Roberts dyneé
solutions.

Although these studies (in which the fluid inertia is much larger than that appropriate
the Earth’s core) help us to understand the effect of strong viscous couplings on dyn:¢
processes in the fluid core, we still need to investigate the effect of inertia on the dyne
solutions. One of our goals is to study the effect of the inertia on the fast varying (i.e., st
time scale) flows so that we can apply our results to the geomagnetic secular variation
appropriate asymptotic extrapolations.

APPENDIX A: NORMAL MODE ANALYSIS

We consider a simple system: an infinite layer of electrically conducting fluid rotatir
about vertical, with a prevailing uniform magnetic fi@g. Introducing small normal mode
perturbations,

f (r’ t) — foeik~r+)xt’

and neglecting the nonlinear terms of the perturbations, we may obtain from (2.11)—(2.



NUMERICAL MODELING OF THE GEODYNAMO 75

the dispersion relation
(O + k%) (Rox + K*E £ ikz/K) + A(K - Bg)? = 0. (A1)

There are two limiting cases that are particularly interesting. If the wave nugribatmost
perpendicular td3y, i.e., the perturbation is decoupled from the prevailing magnetic fie
we may obtain from (A.1) the “kinematic” modes

A:%(—szﬂ:ikz/k), (A.2)

together with the (magnetic) free decay modes
A= —K2 (A.3)

The modes (A.2) are called inertial modes and result from a balance between the Co
force and the inertial force. The decay rate and the oscillation frequency of the ine
modes differ by a factor oE .

If the perturbations are almost invariant in the direction of the rotation axiskj.e:,0,
we have the magnetic modes

K 1 SRES

which are often called torsional oscillations in geomagnetism [40]. They result fron
balance between the inertial force and the Lorentz force. The decay rate and the oscill
frequency of the magnetic modes differ by a factoRgf/2.

APPENDIX B: SPHERICAL HARMONIC EXPANSIONS

B.1. Components of the Fluid Flow and the Magnetic Field

Using (3.1), we obtain the following expressions for the components of thevflamd
the vorticityw =V x v,

rlv =—-LP, (B.1)
. . 9 dP, OT,
r sinf vy = sind — —, (B.2)
30 ar 3¢
. d JdP, . 0T,
rsinfuvy = ——> —sing—-, (B.3)
dg or 0
2o = LT, (B.4)
. 99T, o [0 L
r sind = sing — —— | —=+ = | P, B.5
@ 96 o 9¢ (ar2 + r2> (B.5)

: 99T, . a8 L
rsinf wy = 36 or +sm939<+> Py, (B.6)
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where

1 9 9 1 9?
—— —sinf— + ——— B.7
sing 96 20 " Sirt 9 9¢?2 B.7)

is the angular momentum operator. ReplaciRg (T,) by (P,, Tp) in the above equations,
we obtain similar expressions for the components of the magneticBiald the current
densityJ.

B.2. The Equations of the Magnetic Field B and the Temperature

Substituting the expansion (3.3) into (B. 1)—(B. 6), and thenipt@.12),1, -V x (2.12),
and (2.13), we obtain the following equations for the spectral coefficients of the fields,

9 92 11+ o2
{a__ [ﬁ r2 Hb' Tl +1) E (B.8)

9 92 10+ o2
{a__ [W 2 HJ' =D (8:9)

0 [d+1) m m
(it ol = o
where

f3=1 -[V x (vx B)], (B.11)
fa=1 -[VXxVx(VxB), (B.12)
fs=—-v.-VTp—Vv-VO. (B.13)

B.3. The Momentum Equations

Because the Coriolis term in (2.11) causes the coupling between adjacent spectral
ficients @, o), we divide the coefficients into two groups according to their symmetr
properties,

ms) m@T T
AR R [APTRRTAPIN (B.14)

and similarly fora".
Takingl, - Vx (2.11) andL, - V x V x (2.11), applying the spherical harmonic transform
(3.3) and the symmetry parity (B.14), and the recurrence relations

cosoY" (0, ¢) = ¢}, Y110, 9) + Y10, ¢), (B.15)

.9
sme£Ylm(9, #) =11, Y 110, 9) — (1 + DY 16, ¢), (B.16)

m_ | =md+m
“TV@-v@+y (B.17)
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we obtain the following compact momentum equations for the spectral coefficients of
toroidal and the poloidal flow,

3 % 10+ im ma =D /3 1\ me
R e T ) e e C L

E: iiicﬂl(aar +'T1> Ui = ; (lrjl) f7m, (B.18)
_{R° - E{;rzz - l(lrﬁl)] B I(Ii—TD}[aar22 I(Irtl)} i
e () e )
and
{R"%_E[%_I(IZD} |(|T1)}wm® (IT—qu(g :) &
‘ﬂiith? %i>ﬂ® m+nqw (B.20)
_{ROE_EB%_M;ZD] |(| }[arz )}vﬂ‘“‘)
- (- ) - e '¢1>w.;ng
=T f 3 2"+ [ReT" + ReoCP'). (8:21)
where
fi=1 -V x[JxB— Rw xV], (B.22)
fp=1 -V xV x[JxB— Rw x V. (B.23)

Note that (f,, f2) in (B.22)—(B.23) are similar tofg, f4) in (B.11)—(B.12). Equations (B.8)—
(B.10) and (B.18)—(B.21) can be written in a generalized form (3.4).

APPENDIX C: NONLINEAR EIGENVALUES OF THE NONLINEAR TERMS
Denote byf the flow of the system
f=(,B,O)". (C.1)
Assuming that

=(,B.,0)" (C.2)
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is a small departure from the state (C.1), retaining and linearizing the terms in (2.11)—(2.
that are solved explicitly, and replacidgwith the eigenvalué., we obtain

1
(A+V~V)v’=—v’~Vv+§(B-VB’+B’~VB)+r21(9/ (C.3)
(A+Vv-V)B=—V.-VB+B-VV +B - Vy, (C.4)
(A+V-V)O = —V - V(To + O). (C.5)

This eigenvalue problem leads to a seventh-order equation for the eigenvalue.

Because we are looking for the largest local eigenvaloe the collocation points, we
could approximaté as a local constant and repla€eby the local mesh sizah=*. Then
we may obtain the following eigenvalues that possess the largest magnitude,

LA=-v-Aht+ \/(v~ Ah=1)2 4 4{i(B - Ah—1)2 _ RinTo . (C.6)
Ro Ro
APPENDIX D: MAGNETIC TORQUE AND THE ANGULAR MOMENTUM
The angular momentum of the inner core and the mantle can be written as
M; = Ljjwj, (D.1)

whereL;; is the tensor of the momentum inertia ands the angular velocity. In this paper
we assume the spherically symmetric system,

Li; = L&j, (D.2)
where, in nondimensional form,
) (@) 87 p(i)

LO =2~ X2 +y3)dV = & PS5 D.3
p r§rio( +Y9) 15 io (D.3)

(m) 8 p(m)
|_<m>=L X2 +y3)dV = — < )r5—1. D.4
P 1§r§reo( ¥9) 15 P ( ee ) ( )

The superscripts andm in the above equations indicate the inner core and the mantl
respectively. Equations (D.2) and (D.3) are to leading order good approximations to
Earth because the Earth’s ellipticity is small [41].

The magnetic torque on the inner core is, in nondimensional form,

I‘B=A/ rx(JxB)dV:A/ (rxB)B dS (D.5)
I <rio Ir=rio
Therefore,
21
FBX_\/ / sn 9(rB¢cose—|ng)Yl dQ +c.c. (D.6)
I'=rio
ey = \/ / cosh)YidQ +c.c. (D.7)
r=r, SiN 6
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N «/4711\/ (r?B)(rBy sing)Yy d2, (D.8)

I'=Tio

whered(2 is the differential solid angle. Changing the signs in (D.6)—(D.8) and replaci
r =rj, byr =1, we obtain the magnetic torque on the solid mantle.
The velocity field of a solid body rotation with the angular velocitys of the form

V=w XTI = (wyZ— 0Y)1x + (0 X — 0x2) 1y + (wxy — wyX)1,. (D.9)

Applying the transform relations between the Cartesian coordinate and the spherical «
dinate, we obtain

(r sinfuy) = r?(wy Sind cosp — wy Sind sing)

2T .
= _,/?rz[(wﬁuwx)vﬁc.c.], (D.10)
(r SN vy) = w,r?sirf 6 — r%(wy Sind cosd cosg + wy sind cosd sing)
2 2r 5 . 1
= wr?sifo + =’ [(wx —iwy)Y; +c.cl. (D.11)

The consequence of ignoring non-axisymmetric inertia is to eliminate fast, free pre
sions in our system. To demonstrate this, consider the horizontal torques

'y = LAy Sinat, I'y = LAy cosat. (D.12)
By the full equation (2.10), we have

wyx = € SiN— + C, cOS— + 2LR°O[)X

R, IR, 1 (2Ro)? cosat (D.13)
_ L . L _ A+ (ZRO(X)Ay .
wy = C1 COSZRO + Cp Sin IR, 2—1 ~ (2Ro)? sinat, (D.14)

wherec; andc;, are arbitrary constants that determine the free precessions. The free o
lations vary on a time scale of (2R,), or that of the rotation of the system. If the torque:
I'y andI'y vary on a much longer time, i.ex, < 1/(2R,), then the approximation (2.23)
determines to leading order the forced precessions that are described in the last ter
(D.13) and (D.14).
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